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Using State-and-Transition Modeling to
Account for Imperfect Detection in Invasive

Species Management
Leonardo Frid, Tracy Holcombe, Jeffrey T. Morisette, Aaryn D. Olsson, Lindy Brigham, Travis M. Bean,

Julio L. Betancourt, and Katherine Bryan*

Buffelgrass, a highly competitive and flammable African bunchgrass, is spreading rapidly across both urban and

natural areas in the Sonoran Desert of southern and central Arizona. Damages include increased fire risk, losses in

biodiversity, and diminished revenues and quality of life. Feasibility of sustained and successful mitigation will

depend heavily on rates of spread, treatment capacity, and cost–benefit analysis. We created a decision support

model for the wildland–urban interface north of Tucson, AZ, using a spatial state-and-transition simulation

modeling framework, the Tool for Exploratory Landscape Scenario Analyses. We addressed the issues of undetected

invasions, identifying potentially suitable habitat and calibrating spread rates, while answering questions about how

to allocate resources among inventory, treatment, and maintenance. Inputs to the model include a state-and-

transition simulation model to describe the succession and control of buffelgrass, a habitat suitability model,

management planning zones, spread vectors, estimated dispersal kernels for buffelgrass, and maps of current

distribution. Our spatial simulations showed that without treatment, buffelgrass infestations that started with as little

as 80 ha (198 ac) could grow to more than 6,000 ha by the year 2060. In contrast, applying unlimited management

resources could limit 2060 infestation levels to approximately 50 ha. The application of sufficient resources toward

inventory is important because undetected patches of buffelgrass will tend to grow exponentially. In our simulations,

areas affected by buffelgrass may increase substantially over the next 50 yr, but a large, upfront investment in

buffelgrass control could reduce the infested area and overall management costs.

Nomenclature: Buffelgrass, Pennisetum ciliare (L.) Link.

Key words: Buffelgrass, Southern Arizona Buffelgrass Coordination Center, SABCC, decision support tools, Tool

for Exploratory Landscape Scenario Analyses (TELSA), maxent, inventory, EDRR.

In a process analogous to triage, land managers need
guidance on how best to allocate limited resources in
managing invasive plants across species, space, and time
(Eiswerth and van Kooten 2002; Leung et al. 2002). These
kinds of decisions often need to be made with limited
information about the location and degree of infestations,
their spread rate, and the cost and effectiveness of alterna-
tive management actions (Frid and Wilmshurst 2009).
Collecting information to reduce these uncertainties can
improve the effectiveness of management; however, there is
a cost associated with gathering this information. This
tradeoff between allocating resources toward the treatment
of established infestations vs. gathering information is not
always taken into consideration.

An example of the tradeoff between allocating resources
toward management actions vs. gathering information is
the implementation of early detection and rapid response
strategies (EDRR) (Maxwell et al. 2009). By definition,
EDRR requires that land managers allocate time and
resources to gather information by conducting inventory
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surveys to detect new infestations. In doing so, they forego
the opportunity to allocate these resources toward treatment
of detected infestations. There is consensus that detecting
and treating nascent foci is usually most effective (Moody
and Mack 1998). However, land managers often are inclined
to focus resources on well-established infestations because
performance measures are based on acres treated, and
inventory surveys that fail to detect new infestations are often
considered failures. Land managers require tools to evaluate
the allocation of limited monetary and vocational resources
between direct management actions and the gathering of
information. These tools must demonstrate the value, if any,
of investments made in gathering information.

Simulation models are a useful tool to explore alternative
ways to allocate resources between management actions and
information gathering. Various models exist that consider
resource allocation strategies for invasive plant manage-
ment (Frid and Wilmshurst 2009; Higgins et al. 2000;
Provencher et al. 2007; Wadsworth et al. 2000). Some of
these models consider the cost of gathering information on
the occurrence and location of infestations (Regan et al.
2006), but few do so in a spatially explicit context
(Maxwell et al. 2009). State-and-transition simulation
models (STSMs), sometimes referred to as Markov process
models, have been widely used to evaluate alternative land
management scenarios (Forbis et al. 2006; Frid and
Wilmshurst 2009; Hemstrom et al. 2007; Strand et al.
2009). These models are relatively simple and can be
applied to different ecosystems and management questions.
At their most basic, STSMs require that possible vegetation
states for locations of interest be defined along with the

transitions that can move that location from one state to
another (Westoby et al. 1989). Transitions can occur either
probabilistically each time step or deterministically with the
passage of a specified time period. STSMs can either be
nonspatial or spatially explicit.

One of the challenges of modeling the spread and con-
trol of invasive plants using STSMs is that there is often
‘‘imperfect detection’’ of the invader on the landscape. Search-
ing for undetected infestations is costly and managers rarely
are able to survey every location on the landscape to determine
where an invader occurs. Even for locations that are surveyed,
these efforts may fail to detect the invader when it is present at
low densities. Regan et al. (2011) developed a nonspatial
Markov process model that explicitly takes into account
‘‘imperfect detection’’ regarding the occurrence of an invasive
plant at a specific location. This model is useful for making
decisions about the allocation of management resources on a
location-specific basis but, because of its nonspatial nature, it
can not be applied to decision making at the landscape scale.
A similar approach could be taken using a spatially explicit
STSM to inform decisions about the allocation of manage-
ment resources between treatments and information gathering
at the landscape scale. With this type of model, land managers
could address such questions as (1) what proportion of the
overall budget for the landscape should be spent on surveying
vs. treatment and (2) where the highest priority areas for these
activities are located on the landscape.

One of the key challenges to developing a model to
support management decisions is obtaining the data
necessary to parameterize the model. STSMs often rely
on expert opinion for parameterization (Czembor and Vesk
2009) and this can lead to greater uncertainty in predic-
tions when compared to models that rely on empirical data
alone (Czembor et al. 2011). Two key inputs often used to
parameterize STSMs are the rates of spread of invasive
plants across the landscape and the habitat suitability of
different locations on the landscape for the invasive plant
being examined (Frid and Wilmshurst 2009). Ideally, a
spatial time series depicting the extent of invasion at
different points in time is required to accurately parame-
terize spread rates. Recent methodologies developed using
remote sensing and aerial photography provide tools to
obtain this type of information (Browning et al. 2009;
Franklin et al. 2006; Huang and Asner 2009; Lonsdale
1993). Recent developments in the field of envelope
modeling (Evangelista et al. 2008; Hijmans and Graham
2006; Hirzel and Arlettaz 2003; Jarnevich and Reynolds
2010) also provide opportunities to integrate such
modeling techniques with STSMs, thereby reducing the
need to rely on expert opinion to define a map of habitat
suitability (see Frid and Wilmshurst 2009).

In this study we developed a STSM for buffelgrass
[Pennisetum ciliare (L.) Link, synonymous with Cenchrus
ciliaris], a bunchgrass native to subtropical and tropical

Management Implications
Knowledge of where invasive species occur is often slim to

nonexistent. In the face of this imperfect knowledge, land
managers are still required to determine where to allocate their
limited resources. Using a decision support model such as TELSA
allows land managers to make a more informed decision on where
to allocate funding. We addressed this imperfect knowledge in
three ways. First, we acknowledged that there were many
undetected buffelgrass plants on the landscape by stochastically
adding and growing patches across the landscape throughout a 50-
yr simulation. This is a way to see how populations that are not
detected grow over time. We also developed a map of potentially
suitable habitat to predict the future spread of buffelgrass patches.
Finally, we calibrated spread rates by comparing past and current
aerial photographs with simulation outputs. We found that areas
invaded by buffelgrass may increase substantially over the next
50 yr, but that a large, upfront investment in buffelgrass control
could reduce that area and overall management costs. The
application of sufficient resources toward inventory is important
because patches that remain undetected will tend to grow
exponentially and, when eventually detected, will require
substantially higher treatment efforts to control.
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Africa and western Asia and invasive in Australia and the
Americas (Marshall et al. 2011). Buffelgrass poses a
problem in the warm, summer-wet deserts of North
America by growing in dense stands and introducing a
novel wildfire risk in vegetation not adapted to fire. Such
invasions have introduced fine fuels and fire to desert
shrublands that did not experience frequent or extensive
wildfires until recently (Brooks 2008; Brooks et al. 2004;
Schmid and Rogers 1988). Buffelgrass can also crowd out
native plants (Morales-Romero and Molina-Freaner 2008;
Stevens and Fehmi 2009), reduce primary productivity
(Franklin et al. 2006), and negatively affect habitats of
iconic native species, including giant columnar cacti such
as saguaro (Carnegiea gigantea (Engelm.) Britton & Rose)
(Esque et al. 2004) and the desert tortoise (Gopherus
agassizii Cooper) (Esque et al. 2002). Following the classic
grass fire cycle (Brooks et al. 2004; D’Antonio and
Vitousek 1992), fires in buffelgrass stands will likely allow
for even more vigorous growth of subsequent buffelgrass;
native plants are killed by the heat of the fire, whereas
buffelgrass resprouts quickly or rapidly colonizes by seed
newly disturbed habitat (Miller et al. 2010). Even without
fire, buffelgrass can eliminate native species through
competition for space, water, and nutrients (Olsson et al.
2012b). Given the urgency of the situation, land managers
need to make fast decisions about how to best allocate
funds and effort to prevent further buffelgrass spread. This
is a difficult process when there is a paucity of information
about the rate of spread and distribution of buffelgrass
across different habitats and jurisdictions, as well as about
the effectiveness of management actions.

We used the Tool for Exploratory Landscape Scenario
Analyses (TELSA, Version 3.6, ESSA Technologies Ltd.
2008) to simulate a spatially explicit STSM of buffelgrass
spread and control on the south slope of the Santa Catalina
Mountains on the outskirts of Tucson, AZ, a growing
metropolis of nearly one million people. TELSA is a
framework for developing spatially explicit STSMs. TELSA
has been used to simulate the spread and control of other
invasive plant species including cheatgrass (Bromus tectorum
L.) in the Great Basin (Provencher et al. 2007), knapweed
(Centaurea stoebe L.) and leafy spurge (Euphorbia esula L.)
in Montana (Frid et al. 2013) and crested wheatgrass
[Agropyron cristatum (L.) Gaertn.] in Grasslands National
Park of Canada (Frid and Wilmshurst 2009). The
algorithms that simulate invasive plant dynamics on the
landscape are described in detail in the above publications.
The spatial domain encompasses undeveloped natural
areas owned and managed by Coronado National Forest
(CNF) and adjacent subdivisions and resorts. Our model
explicitly accounts for resource allocation tradeoffs
between treatment of established patches and information
gathering about the location of previously undetected
infestations.

We calibrated the spatial spread of our invader with
historical reconstruction of buffelgrass spread based on
aerial photographs (Olsson et al. 2012a). Aerial photogra-
phy is frequently used to map invasive species and
reconstruct historical distributions of species (Browning
et al. 2009; Franklin et al. 2006; Huang and Asner 2009;
Lonsdale 1993), although discrimination among individual
species is dependent on image quality, phenology, and
physical characteristics of the species that may distinguish
infested from uninvaded areas. Lonsdale (1993), for
example, utilized historical photography of different spatial
extents and resolutions to reconstruct Mimosa pigra L.
spread in Australia during the 1980s. Browning et al.
(2009) compared digitized canopy cover of Prosopis
glandulosa Torr. in 1936 aerial photographs (digitized at
1-m spatial resolution) with field-based measurements
from 1932 and found that P. glandulosa canopies , 2.9 m2

(31.2 ft2) were not consistently identified in aerial
photographs. Huang and Asner (2009) point out that
timing of image acquisition may also have a profound
effect on the ability to distinguish between invasive and
other cover.

Our objectives for this study were to (1) develop a
STSM that explicitly considers ‘‘imperfect detection’’ when
information about the occurrence of invasive plants on the
landscape is incomplete, (2) develop a methodology that
uses detailed aerial photography to calibrate the spread of
invasive plants in a STSM, (3) integrate the quantitative
envelope-based habitat suitability models to define habitat
suitability and its influence on the spread probability for
invasive plants in a STSM, and (4) apply the STSM
developed through objectives 1 through 3 to evaluate
alternative management scenarios for buffelgrass in the
Santa Catalina Mountains.

Materials and Methods

Study Area. The 46,000-ha (113,666 ac) study area
(32.32uN, 110.75uW), is located on the lower southern
slopes of the Santa Catalina Mountains in southern
Arizona, just north of the city of Tucson (Figure 1). The
dominant habitat is typical of the Arizona Upland (Turner
and Brown 1994). The sparse (25 to 35%) canopy cover is
dominated by palo verde (Parkinsonia microphylla Torr.),
brittlebush (Encelia farinosa Torr. & A. Gray), the iconic
saguaro cactus [Carnegiea gigantea (Engelm.) Britton &
Rose], and numerous other trees, shrubs, cacti, grasses, and
forbs (Turner and Brown 1994). This south slope of the
Santa Catalina Mountains was selected for a number of
reasons. First, this sector is one of the most visible and
valued natural landscapes in southern Arizona, and
buffelgrass invasion here poses novel fire risks to adjacent
forest lands and subdivisions. Second, buffelgrass invasion
has accelerated in this sector since the mid-1980s, but
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efforts to control the spread on CNF only started in the
past 2 yr and thus can still be heavily influenced by decision
support models. Third, a rich data set was available for the
region, comprising remotely sensed and field surveys
(Olsson et al. 2012a). This readily available information
helped with the process of initializing and calibrating the
simulation model.

Adding States to Account for Imperfect Detection.
Following previous work with TELSA (Frid and Wilms-
hurst 2009), the dynamics of buffelgrass spread, inventory,
and management within any given polygon are represented
with an STSM. To account for imperfect detections in this
study, we used a similar approach to Regan (2011), in
which modeled states represent both the state of the
vegetation at a location and the accuracy of the information
available to managers about that location. The STSM
categorizes each polygon dynamically over time based on
both the presence and abundance of buffelgrass and on
whether the buffelgrass has been detected. The STSM has a
total of eight possible states represented by five possible
cover classes (absent, seedbank only, , 5%, 5 to 50%,
. 50%) and by whether the presence of live plants has
been detected by managers (Figure 2). These cover classes
were defined based on discussions with buffelgrass
managers and the rationale for these breakpoints was based
on changes in the success of inventory and treatments. In
areas of moderately suitable habitat (defined below) we
exclude the . 50% cover classes and, in areas with low-
suitability habitat, we exclude cover classes with . 5%
buffelgrass cover.

The Use of Historic Air Photos to Calibrate the Spread
Rate Used in the Simulation Modeling. Olsson et al.
(2012a) reconstructed buffelgrass spread at 11 sites in the

Santa Catalinas using historical aerial photographs with a
spatial resolution varying between 0.25 and 1 m (3.28 ft)
and found populations doubling approximately every 2.66
to 7.04 yr. We identified the three sites with the longest
and most complete time series of data to calibrate our
spatially explicit spread model. Each of the three sites had
photos from at least eight dates dating back to 1988, 1994,
and 1980, respectively, and represented the 5th, 6th, and
11th largest populations of the 11 sites. These sites range in
infestation area from 0.39 to 2.46 ha for the 2006 survey
year, up from their initial infestation areas of 0.02 to
0.13 ha. Additionally, reconstructed spread indicates these
three populations have been doubling approximately every
3.04, 4.23, and 6.01 yr. We simulated spread using TELSA
at each of the three sites for the equivalent time period of
record (e.g., 1988 to 2006 for site 1, 1994 to 2008 for site
2, and 1980 to 2008 for site 3) and the area invaded was
compared with the reconstructed area at three benchmark
years.

We selected a probability distribution of spread distances
(Weibull, scale 0.2, shape 0.5) for which the modeled
spread of buffelgrass closely matches the aerial photography
for the study area. Figure 3 depicts a spatial comparison of
simulated and actual buffelgrass spread for these sites; each
row in the figure represents a calibration site. Figure 4
shows the actual area invaded by buffelgrass pooled across
the three sites and compared against the simulated area in
the calibration. Calibration simulations were run using
TELSA, which carves the landscape into tessellated
polygons. In this study, the landscape was divided into
70,073 tessellated polygons ranging in size from 3 m2 to
20,502 m2 (2 ha) with a mean of 6,577 m2 (0.66 ha) and
standard deviation of 3,842 m2. To calculate the area
invaded by buffelgrass in the simulations, we assume that
on average, polygons in the 0 to 5% cover class have 2.5%
of their area invaded, polygons in the 5 to 50% cover class
have 25% of their area invaded, and polygons in the
. 50% cover class have 75% of their area invaded.

Using Quantitative Methods to Produce Habitat
Suitability Maps. A key input required in our simulation
is a map of buffelgrass habitat suitability for the study area.
We developed this habitat suitability map using maximum
entropy modeling (Maxent, Princeton University, Depart-
ment of Computer Science, Princeton NJ, v. 3.3.1)
(Phillips et al. 2006). Maximum entropy modeling is a
presence-only machine learning method. This algorithm
estimates potential habitat distribution by finding the
distribution of maximum entropy, or that farthest from
random (Phillips et al. 2006). Maxent uses background data,
or the environmental layers as model inputs (Hijmans and
Graham 2006). The background layers used were gathered
from the National Elevation Dataset (Gesch 2007; Gesch
et al. 2002). We used elevation at approximately 30 m2

Figure 1. A map showing the study area boundary for the
Santa Catalina Mountains north of Tucson.
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spatial resolution and derived slope and absolute aspect from
the elevation layer in ArcGIS (ArcMap 9.3, ESRI, Redlands,
CA). Buffelgrass presence data used to develop the model
were compiled by Olsson et al. (2012a). Duplicate points
were removed within each cell, which left a total of 1,174
data points. The model was trained on 70% of the data with
30% reserved for testing the model. Maxent was run 25
times with the average of these runs used as the final model.
The model’s overall performance was assessed using the area
under the receiver operating characteristic curve (AUC).
This is a threshold-independent indication of model
performance (Phillips et al. 2006). The AUC of the model
is 0.783. Swets (1988) reports that AUC values greater than
0.7 are acceptable. The contributions of the variables are
elevation, 65.1%; slope, 28.2%; and absolute aspect, 6.7%.

Spatial Simulation Algorithms. The algorithms that
simulate invasive plant dynamics on the landscape are
described in detail in the TELSA model description (ESSA
Technologies Ltd. 2008:26–50). Here we give a brief
overview of the algorithm with specific references to the
settings used for modeling buffelgrass in the Santa Catalina
Mountains. TELSA operates by carving the landscape into
tessellated polygons. Within each tessellated polygon,
transitions between states are driven by natural and
anthropogenic processes that include the following:

dispersal of buffelgrass seeds from neighboring and distant
polygons; buffelgrass cover increase within the polygon over
time; inventory; mechanical or chemical treatment; and
posttreatment maintenance. Spread of buffelgrass from
polygons where it is present to neighboring polygons is
simulated with a probability distribution of annual spread
distances or dispersal kernel. TELSA has the following
dispersal kernels available: exponential, log-normal, Weibull,
and Pareto. We chose a Weibull distribution to represent the
dispersal kernel because it has a very flexible shape that may
represent a variety of dispersal kernels (Morales and Carlo
2006) and out of the ones available in TELSA it seemed
most appropriate based on visual examination of dispersal
data from Olsson et al. (2012a). We used scale and shape
parameters of 0.2 and 0.5, respectively, for the annual
dispersal kernel (based on the spread rate calibration
described above). The dispersal algorithm takes into account
propagule pressure and habitat suitability by modifying
dispersal distances selected from the kernel with multipliers
for the source polygon state and for the target polygon
habitat suitability. Distance multipliers for the source state
were 0.05 for states with , 5% cover, 0.5 for states with 5 to
50% cover and 1 for states with . 50% cover. Distance
multipliers for the habitat suitability of the target polygon
were 0.05 for low suitability, 0.5 for moderate suitability,
and 1 for high suitability.

Figure 2. State-and-transition simulation model for buffelgrass succession, detection, treatment, and maintenance dynamics
following initial dispersal to a simulation polygon.
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Long-distance dispersal to polygons where buffelgrass is
absent was modeled using a random, Poisson-distributed
number of new buffelgrass introductions per year with an
average value of six. High-habitat-suitability polygons were
twice as likely to have new introductions compared to
moderate-suitability polygons, and 20 times more likely
than low-suitability polygons. Polygons adjacent to a road
were also 20 times more likely to have new infestations

than polygons not adjacent to roads. There are very few
data available to inform long-distance dispersal rates and
therefore the assumptions of six new introductions per year
to the landscape and the relative likelihood of establish-
ment according to habitat suitability was based on the best
guess of buffelgrass managers attending a workshop held in
Tucson in May 2010. We acknowledge that this is one
aspect of our simulations that is uncertain and in the future

Figure 3. Map comparing buffelgrass distribution data against calibration results. Simulations were started in 1980 using known
buffelgrass locations. Each row represents a different calibration site. The first three panels for each row show the time series of actual
buffelgrass cover in black and the simulated extent of buffelgrass with shading representing percentage of cover of the simulation
polygons. The final panel shows habitat suitability for the same area. The dispersal kernel used was a Weibull distribution with alpha
equal to 0.2 and beta equal to 0.5.
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would benefit from further sensitivity analyses such as those
conducted on treatment and inventory effectiveness.

Buffelgrass cover increase in the absence of treatment
within each tessellated polygon was modeled determinis-
tically as a function of time since invasion. The time to
transition to . 5% cover is 10 yr postinvasion; for . 50%
cover it is 20 yr postinvasion. Inventory actions are broken
down into two distinct categories: (1) inventory that occurs
adjacent to polygons that have detected infestations of
buffelgrass and (2) inventory that occurs randomly across
the landscape. The first is modeled with a specified yearly
budget that prioritizes areas adjacent to the smallest patches
of detected buffelgrass. The second is applied randomly to
5% of the landscape that has no detected buffelgrass per
year. Inventory can be applied to polygons where
buffelgrass is absent or present. The probability of
detection through inventory increases with increasing
cover. Based on a survey of land managers, we defined
best and worst case scenarios for inventory detection
success as a function of cover class (Table 1). Failure to
detect buffelgrass maintains the polygon in its current state
whereas successful detection transitions a polygon to the
detected state for the equivalent cover class where treatment
can then take place.

As with adjacent inventory, treatment (mechanical or
chemical) is modeled with a fixed area budget per year, and
small patches of detected buffelgrass are prioritized over
large ones. We assigned worst and best case scenarios for
detection error and treatment efficacy rates based on a
survey of land managers (Table 1). Successful treatment
transitions a polygon to a lower cover class; if the polygon
is already in the lowest cover class (, 5%), it transitions to
the seedbank state. Thus, for polygons that have . 5%
cover, at least 2 yr of repeated successful treatment are
required to achieve the seedbank state. If treatment is
inconsistent over time (e.g., a year goes by without
treatment), or the application of treatment fails to reduce
cover, the polygon will transition to the next higher cover

class until it reaches the cover class at which treatment
began. This is consistent with observations at Saguaro
National Park showing that a single treatment is a waste of
resources because an active seedbank is left in the soil and
a polygon will rapidly return to its original state of
infestation if it is not treated for several consecutive years in
a row (D. Backer, personal communication). Once a
polygon reaches the seedbank state and no live buffelgrass
plants remain, managers must revisit the site at least once
per year to remove any seedlings. Without this mainte-
nance process the site quickly returns to an infested state.
As we did for treatment, maintenance was modeled with a
fixed area budget per year prioritizing small buffelgrass
patches over large ones. After 3 yr of residence in the
seedbank state, polygons transition to the uninvaded state
at a rate of 10% per year.

In addition to the map of habitat suitability and the
STSM model for within-polygon dynamics, the model
requires an initial distribution of buffelgrass on the
landscape. We obtained data on the current distribution
of buffelgrass in the Santa Catalina Mountains from
Olsson et al. (2012a). Because survey efforts for buffelgrass
have been limited to aerial photography, only patches
greater than 0.5 ha have been mapped. In contrast, at
nearby Saguaro National Park, where surveys have been
intensive, 90% of observed buffelgrass patches are , 0.5 ha
in size. It is likely, therefore, that small unknown patches of
buffelgrass existing in the study area need to be added to
the current distribution data. To do this, we compared the
cumulative size distribution for the Catalina Mountains to
that for Saguaro National Park. We determined the
number of small patches (, 0.5 ha) that, when added to
the Santa Catalina Mountains, would minimize the sum of
squared differences between the cumulative patch size
distribution for both landscapes. The number of small
patches we added to the Santa Catalina Mountains was
2,808. To set the location of these simulated undetected
patches on the landscape we used the TELSA simulation
algorithm for adding new patches to the landscape.

Figure 4. Area invaded by buffelgrass at three model calibra-
tion sites in the study area as observed in the data and in the
calibration simulations.

Table 1. Success rates used in the simulations for inventory
and treatment transitions based on management responses to a
treatment-success questionnaire.

Treatment intervention

Success rate

Worst case Best case

Inventory , 5% 0.01 0.9
Inventory 5–50% 0.25 0.9
Inventory . 50% 0.5 1.0
Treatment , 5% to seed 0.5 0.9
Treatment 5–50% to , 5% 0.9 1.0
Treatment . 50% to , 5% 0.4 0.9
Treatment . 50% to 5–50% 0.5 0.1
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Once the model was calibrated through the retrospective
analysis described above, we simulated forward in time
from 2010 for 50 yr to 2060. We simulated a total of five
scenarios, including no management and four possible
combinations of management with and without a budget
limitation and with high or low effectiveness. Each
management scenario was simulated first with an unlimited
budget in terms of area undergoing management interven-
tions, and then with an annual limit for each management
activity set at 50% of the maximum area managed in the
unlimited scenario. For each scenario, we present the total
area invaded by buffelgrass over time and the total area
undergoing each type of management intervention.

Results and Discussion

Simulation Results for Buffelgrass in the Santa Catalina
Mountains. Our simulations predict that in the absence of
any treatment, the area invaded by buffelgrass in the Santa
Catalina Mountains will increase exponentially from 82 ha
in 2010 to nearly 1,800 ha by 2030, and to more than
6,000 ha by the year 2060 (Table 2). This area amounts to
almost 80% of all suitable habitats having buffelgrass at
carrying capacity, which would amount to 7,700 ha
invaded (Figure 5). The pattern of spread in the model is
logistic, with exponential growth occurring over the first
30 yr followed by a slower rate of growth as buffelgrass
approaches its ecological limit (Figure 5). If it proceeds

Table 2. Simulation results for area invaded by buffelgrass and cumulative area inventoried, treated, and maintained at years 2030 and 2060.

Cumulative

Scenario Year Invaded Inventory Treatment Maintenance

–––––––––––––––––––––––––––––––––––––––ha ––––––––––––––––––––––––––––––––––––––

Initial conditions 2010 82 0 0 0
No management 2030 1,795 0 0 0

2060 6,263 0 0 0
Intermediate management worst case 2030 997 82,281 682 9,494

2060 4,952 236,142 3,157 29,059
Intermediate management best case 2030 603 104,520 971 18,244

2060 3,081 258,212 3,364 46,843
Unlimited management worst case 2030 864 81,897 837 10,060

2060 637 358,643 11,543 99,986
Unlimited management best case 2030 159 146,054 1,460 27,851

2060 54 392,803 3,752 75,380

Figure 5. Results of five simulation scenarios showing the extent of buffelgrass invasion in the Santa Catalina Mountains over time.
Areas were calculated by taking the sum product of polygon area and the percent cover multiplier for each polygon invaded by
buffelgrass in the model. The percentage of cover multipliers used were: 0.025 for , 5% cover, 0.25 for 5 to 50% cover, and 0.75 for
. 50% cover.
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without intervention, the invasion will significantly impact
the ecological integrity of the study area and increase the
fuel loads and continuity in the wildland–urban interface
(McDonald and McPherson 2011). Unchecked buffelgrass
growth will result in increased wildfire risk for adjacent
communities.

Management interventions can reduce both the rate and
final extent of the invasion, depending on the resources
allocated toward possible interventions and the effective-
ness of the management actions. All management scenarios
reduced the total area infested compared with no
management, but in the short term (to 2030) scenarios
assuming high effectiveness of management actions made a
more significant reduction. In the long term (to 2060),
scenarios assuming unlimited management resources made
the most significant reduction in area invaded (Table 2;
Figure 5). In terms of fuel continuity across large areas, all
management scenarios reduced the size of contiguous high-
density patches of buffelgrass up to 2030. However, only
scenarios with unlimited management resources were able
to maintain this up to the year 2060 (Figure 6).

Assuming that costs are directly proportional to area
treated, the potential costs of management interventions
over time can be quite variable and dependent on both the
total resources allocated towards management and on the
effectiveness of management actions. For example, for
treatment alone, Table 2 shows that up to 2030, the
unlimited best case scenario will be the most costly (at
1,460 ha) but that by 2060 the same scenario will be
comparable in cumulative cost to the intermediate
scenarios (3,752 ha and 3,364 ha, respectively) and
significantly cheaper than the unlimited worst case scenario
(11,543 ha). Our simplifying assumption about costs being
proportional to area treated does not take into account
factors such as the accessibility of the sites to be treated.
Future simulation studies could explore the consequences
of this assumption and explore strategies that focus on
treatments and inventory of remote vs. accessible areas.

The implications of reductions in either the effectiveness
or budget allocated to management on overall treatment
costs are shown in Table 2. Reducing the effectiveness of
management efforts when management resources are
unlimited results in an initial reduction in costs (total area
undergoing management interventions) because, with less
effective inventory, there is less area being managed in the
short term. In the long term, however, the unlimited worst
case scenario results in substantially greater area undergoing
management interventions as the unmanaged buffelgrass
population expands substantially early in the simulation.
Similarly, when resources for management are limited, as
in the scenarios where budgets are cut by 50%, initial
treatment costs are reduced. With a reduction in inventory
budgets, less buffelgrass is initially detected and treated.
However, by the end of the simulation the cumulative area

undergoing treatment in scenarios with reduced budgets is
comparable to the effective unlimited budget scenario.

Resources for the management of buffelgrass in the
Santa Catalina Mountains are very limited so our scenario
of ‘‘unlimited resources’’ is hypothetical, and the likelihood
for increased resources for buffelgrass management within
the CNF is low. CNF is managed under a multiple-use
management paradigm and faces substantial internal and
external demands for allocation of limited financial
resources on a variety of fronts. Continuing federal budget
reductions make long-term planning and consistent
treatment problematic. However, the unlimited budget
scenario provides a benchmark for what could be
accomplished. In the case of unlimited management
resources, the total area invaded by buffelgrass after 50 yr
relative to a no-management scenario would be substan-
tially reduced by one or two orders of magnitude
depending on the effectiveness of management interven-
tions. Though the costs of such a scenario may seem
prohibitive, it should be noted that a large upfront
investment can reduce the total management cost substan-
tially over the long term. The cumulative area treated for
the unlimited best case scenario was similar to that for the
intermediate budget scenarios even though the ecological
outcome was significantly improved.

In the short term, the intermediate best case scenario
performed better than the unlimited worst case scenario.
Although this result needs more probing through sensitivity
analyses on the costs associated with increasing effectiveness, it
does suggest that if there is a tradeoff between allocating
resources to treat more area or to increase the efficiency of
treatment for a smaller area, the latter may be better. This is
particularly true for inventory that is ultimately limiting for
the other management activities that occur downstream. If
buffelgrass patches can be effectively discovered early on in the
invasion process, the total area to be treated and maintained
could be substantially reduced. Conversely, ineffective or
insufficient inventory could lead to complacency and a belief
that there is little buffelgrass present in the landscape. In this
situation, by the time that buffelgrass is discovered, the area
invaded could be so large as to overwhelm any possible
management effort. Future scenarios that explore shifting
more resources from treatment towards inventory should be
conducted to explore this question further.

Calibrating STSMs using Aerial Photography. State-
and-transition modeling is a powerful tool to examine
many different management and budget scenarios. Often
state-and-transition models rely heavily on surveys of land
managers for calibration and validation (Czembor and
Vesk 2009; Czembor et al. 2011). Alternatively, state-and-
transition modeling can use available data to inform the
modeling process. Although we conducted a survey of
experts in the Tucson area to fill in gaps in our knowledge,
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we also populated many of the probabilities of the model,
such as spread rate and state duration, with data from the
photo interpretation done by Olsson et al. (2012a). This
ability to inform various aspects of the model with
empirical data helps us to form a stronger and more
realistic model that can be augmented in the future when
more data become available, thus creating an iterative
modeling process that will be more predictive. The models

created here can help inform the decisions managers make
between allocating resources to control or inventory.

Integrating STSMs with Quantitative Environmental
Envelope Models. This study also shows how different
types of quantitative models can be integrated to better
guide decisions for invasive plant management. Habitat
suitability models are commonly used to predict the

Figure 6. Maps of the Santa Catalina Mountain Study area showing (a) mapped buffelgrass in 2010 and simulated buffelgrass
invasion at year 2060 for five simulation scenarios: (b) no management, (c) intermediate management best case, (d) intermediate
management worst case, (e) unlimited management best case, and (f) unlimited management worst case.
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potential distribution of invasive plants (Bradley et al.
2009; Evangelista et al. 2008; Hirzel and Arlettaz 2003;
Jarnevich and Reynolds 2010). However, these models do
not incorporate dispersal rates and management actions.
Integrating the habitat suitability model with the spatially
explicit STSM allows us to account for both the
biophysical determinants of potential buffelgrass distribu-
tion and for the dynamics of both buffelgrass spread and
alternative management actions.

Accounting for ‘‘Imperfect Detection’’ at the Landscape
Scale. Our model incorporated a quantitative method to
explicitly include both detected and undetected buffelgrass
populations in the study area. These populations then had
the potential to remain undetected if no monitoring was
done, or if monitoring efforts failed to detect buffelgrass
when present at low densities. Invasive populations are not
always detected, or detectable (Regan et al. 2011), yet
managers need to determine how to allocate resources
between gathering information about their distribution and
treating infestations that have been detected. As with the
work of Maxwell et al. (2009) our study highlights the
critical importance of conducting inventory to detect new
infestations. Land management agencies should therefore
develop policies that encourage not only the treatment of
detected infestations but also the search for nascent foci.
Such policies could be guided by the use STSMs that
account for ‘‘imperfect detection’’ and provide a flexible
framework with which to examine landscape level alternative
management scenarios for invasive plants such as buffelgrass.
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